An exact functional Radon–Nikodym theorem for Daniell integrals
نویسندگان
چکیده
منابع مشابه
A Daniell-Kolmogorov theorem for supremum preserving upper probabilities
Possibility measures are interpreted as upper probabilities that are in particular supremum preserving. We define a possibilistic process as a special family of possibilistic variables, and show how its possibility distribution functions can be constructed. We introduce and study the notions of inner and outer regularity for possibility measures. Using these notions, we prove an analogon for po...
متن کاملComparison theorem for improper integrals
This is a complement to the comparison theorem for improper integrals in the textbook. The vanilla version presented in the textbook is good enough to solve some very easy examples and it becomes exponentially gory with the complexity of the integral. Fortunately it is not hard to refine the statement in the book, and turn it into a powerful tool to estimate the convergence of arbitrarily compl...
متن کاملNew version of the Daniell-Stone-Riesz representation theorem
The traditional representation theorems after Daniell-Stone and Riesz were in a kind of separate existence until Pollard-Topsøe 1975 and Topsøe 1976 were the first to put them under common roofs. In the same spirit the present article wants to obtain a unified representation theorem in the context of the author’s work in measure and integration. It is an inner theorem like the previous ones. Th...
متن کاملVitali Convergence Theorem for Upper Integrals
It is shown that the Vitali convergence theorem remains valid for the -upper integral. Using this result we prove completeness of the space L( ) with respect to the k kp-upper norm for 1 p < 1 , describe convergence of its elements in terms of the space L( ) for 1 p < 1 , give a necessary and sufficient condition for a sequence from L( ) to converge in the k kp-upper norm to a function from L( ...
متن کاملThe First Mean Value Theorem for Integrals
For simplicity, we use the following convention: X is a non empty set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, and E is an element of S. One can prove the following three propositions: (1) If for every element x of X such that x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative. (2) For every set Y and for every partial function f from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2001
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm148-2-1